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Dynamic Interactive Buckling of Ring Stiffened Composite Shells

Andrea Schokker,* Akihito Kasagi,” and Srinivasan Sridharan*
Washington University, St. Louis, Missouri 63130

The dynamic instability associated with the interactive buckling of ring stiffened composite shells under hydro-
static pressure is investigated. An optimally designed shell has its static local and overall buckling pressures close
to one another. The shell response is then governed by the nonlinear interaction between the modes, which makes
the shell very imperfection sensitive. A shell structure, such as a submarine vessel, can undergo suddenly applied
overpressure or successive shocks. In the presence of imperfections, the dynamic instability will be triggered which
would lead to a reduction of the load carrying capacity of the shell from that associated with quasistatic loading.
Further, the large-amplitude vibrations that occur prior to reaching the dynamic limiting pressure can precipitate
some form of material failure. The dynamic interactive buckling analysis developed in this study is a combination
of the amplitude modulation technique and the asymptotic procedure. The nonlinear differential equations of
motion for the structure so developed are solved by the Newmark method for time step integration along with
Newton-Raphson iterations. Significant reductions in the load carrying capacity of the shells are observed as a
combined result of the dynamic application of the load and the modal interaction. Damping was found to be of
marginal influence in enhancing the dynamic limit load. Interlaminar stresses accompanying the dynamic response

are monitored, and these reach significant values prior to the onset of dynamic instability.

Nomenclature

= constitutive relation matrix

= depth of stiffener below shell base

= elastic modulus

shear modulus

shell length

linear, bilinear, and quadratic operators,

respectively

Langrange multiplier

circumferential wave number for overall buckling

mass matrix

number of degrees of freedom

number of degrees of freedom in the

determination of the buckling mode and

the second-order field, respectively

number of stiffeners

circumferential wave number for local buckling

applied external pressure

inner, mean, and outer shell radii, respectively

spacing between stiffeners

shell thickness

stiffener thickness

shear strain

generic strain

= load parameter

= critical value of A

= critical values corresponding to overall and local

buckling, respectively

dynamic limit load

postbuckling coefficient

= Poisson’s ratio

= (overall imperfection x 10°)/R

= (local imperfection x 10%)/¢

= scalar parameter which measures the growth of
the buckling deformation

= imperfection in the form of the buckling mode
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p = mass density

o = generic stress

T = shear stress

¢ = shape function derived from Legendre
polynomials

® = frequency, rad/s

© = prebuckling quantities

O®,O® = first- and second-order field quantities,
respectively

O1, 02 = overall quantities and local quantities, respectively

On = mixed second-order ficld quantities

Introduction

HE prospect of constructing submarine vessels of composite

materials has led to a recent surge of interest in the compres-
sive failure of composite cylinders. Although a certain amount of
literature on instability of composite cylinders exists, the case of rel-
atively thick composite shells has only recently received attention.
The problem of mode interaction of stiffened composite shells has
been considered by Kasagi,? but the treatment is restricted to static
pressures. Numerous studies on buckling and vibrations of com-
posite cylindrical shells are available in the literature but are often
limited to the case of unstiffened shells®* or consider only the free
vibration problem.>® An early study on the phenomenon of dynamic
stability of imperfection-sensitive structures was accomplished by
Budiansky.” This problem has since been treated extensively in liter-
ature, most notably by Simitses? and his associates. More recently,
dynamic instability of thick composite shells has been investigated
by Palazatto et al.”

The behavior of ring stiffened composite shells is governed by two
modes of buckling: the short wave local buckling mode occurring be-
tween stiffeners with a large number of waves in the circumferential
direction (n) and the long wave overall mode consisting of a rela-
tively small number of waves in the circumferential direction (m) in
which the stiffeners are pulled in and out radially with the shell. An
optimally designed shell structure is so proportioned that the critical
stresses for these two cases is close and, thus, the principal cause
of failure of an optimally designed shell is the adverse nonlinear in-
teraction between the two modes. The present study deals with the
dynamic instability associated with modal interaction in composite
cylindrical shells. In particular, cylindrical shells with interior ring
stiffeners are considered. A three-dimensional anisotropic elasticity
formulation is employed in the analysis making it applicable for
thick composite shells.
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Problem Formulation

General Approach

As a first step, the principal modes of buckling that govern the
static behavior are determined for the ring stiffened shells under
hydrostatic pressure from a linear stability analysis, neglecting pre-
buckling deformation. Next, the second-order fields associated with
the individual modes as well as the mixed second-order field are
determined using the perturbation technique. A three-dimensional
finite element discretization is employed to extract these displace-
ment fields. Thus, the displacements of the shell are expressible in
terms of essentially two degrees of freedom, & and &, viz., the
scalar parameters describing the growth of overall and local modes,
respectively, in the total deformation. It has been shown,!’~!2 how-
ever, that the amplitude of the local mode varies spatially as it comes
under the influence of the overall mode. This is known as the am-
plitude modulation and has been accounted for in the present work.
Thus, the deformation at any instant can be expressed in terms of
& and &;, where the latter are the arbitrary parameters that de-
scribe the spatial variation of the local buckling amplitude. Such a
description of deformation in terms of parameters associated with
static buckling in the investigation of dynamic instability implies the
assumption that the excitation of the structure takes place in terms
of the principal modes of buckling rather than the lowest modes
of vibration. The nonlinear equations of motion of the structure are
derived by formulating the potential energy and kinetic energy func-
tions, respectively, and invoking the Lagrange equations of motion.
Initial imperfections in the modes of buckling are readily incorpo-
rated in the potential energy expression by adding appropriate linear
terms. For any given level of hydrostatic pressure, the solution of
the equations is achieved in the time domain to give the dynamic
response.

Shell Geometry and Material Properties

The shell coordinate system is shown in Fig. 1. The principal
material directions of the lamina are given by the 1, 2, 3 coordi-
nate system where the 1-2 axes are obtained by rotating both the
longitudinal and circumferential tangents by an angle . The 3 axis
corresponds to the outward normal at any point. The coordinate sys-
tem for the cylinder is defined by the longitudinal (x axis), radial
(r axis), and circumferential (8 axis) directions. The displacements
in the longitudinal, circumferential, and radial directions are given
by u, v, and w, respectively. The stress—strain relationship for the
material in the x—r—0 coordinate system is given by the following:

ol "Cny Cpp Ciz O 0 Cis €
o2 Ca Cn Cn 0 0 Cy €
o | _ Ciy Cpn Cyn 0 0 Cs € )
04 0 0 O Cyu Csis O €4
05 0 0 0 Cu Cs5 O €5
G LCis C Ci 0 0 Ce €6

where the subscripts 1-6 are defined as follows for the shell: I — x,
2—>6,3—>r,4—r8,5— rx,and 6 — 6x;and for the stiffener:
1-rn2—-6,3—->x,4—6x,5—rx,and 6 — r8.

For the stiffeners, we set o, = 0 and appropriately modify C;;.
The applied loads are hydrostatic and are made up of two parts: an
axial force P and a radial pressure ¢y, as shown in Fig. la.

Details of the Finite Element Model

All of the finite element calculations are performed using the
p-version technique, i.e., using the smallest possible number of
elements and a set of hierarchic polynomials for the displacement
functions to arrive at convergence. Thus, we adopt the discretization
scheme shown in Fig.1b consisting of three types of elements, viz.,
the bay, the stiffener, and the junction, and use the same scheme
for the computation of prebuckling stress distribution, the buck-
ling modes, and the second-order fields. The shape functions em-
ployed are derivable from Legendre polynomials'?® and have been
used by the authors in previous work.! Whereas these are employed
in the longitudinal and thickness directions, “exact” trigonometric

Fig. 1a  Shell coordinate system, loading and fiber orientation.
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Fig. 1b Longitudinal section, stiffener geometry, and finite element
discretization.

functions are employed in the circumferential direction. A three-
dimensional formulation is used in terms of the three displacement
components, and complete compatibility between the stiffener and
shell is ensured.

Prebuckling

Prebuckling stresses are computed using the linear theory and as-
suming axisymmetric distribution in the sense of independence of
6. The corresponding displacements () are treated as infinites-
imally small so that for any u, L;; @™, u) = 0, where L,; is a
bilinear operator in the sense of Budiansky’ [also see Eq. (5)].

Total Potential Energy of the Buckled State of the Perfect Structure
Strain displacement relations are taken as follows. For the shell

dw

€, = ——
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Jv + 10u + 1 Jw dw " Jv
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For the stiffener

6_(’)w_t_l ou 2+ 3w2 _8v+18u
T ax 2 ar ar yex_«’)x r 06
18v+w+ 1 ou 2+ dw :
g=—"—+—4+—{ | = -
CT a0 r T2z \ e 0 3

_ ou n Jw
Vrx = ar ax

_13w+8v v+1 u ou + Jw \ dw
=% "o 7 r|\ar )\ a8 ar | 36

These equations are valid for both the overall and local buckling
problems. For local buckling the stiffeners undergo negligible trans-
lation in the radial direction and, thus, quadratic terms in w are of
little significance. However, these terms are vital for describing over-
all buckling. The strain-displacement relations can be expressed in
the general form

{e} = L) + $ Lo (w) @

where L, is a quadratic operator. A bilinear operator L; needed
later on is defined as follows:

Ly(u+v) = Ly(u) + 2Ly (u,v) + La(v) )

Next, {u}, {¢}, and {0} can be viewed as being made up of two
parts, one associated with the prebuckled state and one associated
with buckling (asterisk quantities)

) = @) + ()
(e} = (e} + () (6)
{o) = {0} +{0")

The total potential energy function governing the buckled state is
then expressed from the stress—strain and strain-displacement rela-
tionships as

M = [ Cy{ L, ) - L1, () + Ly, () - Loy, ()
+ %LZik () Ly, ("‘7)} + )”ai(o) - Ly, (”Z)]

(i,j=12,...,6) k,1=1,2,3) (7

The equations of equilibrium are then found by rendering the po-
tential energy function stationary.

Fluid Pressure Loading

In the present study, fluid pressure is realistically modeled as
always directed normal to the surface during deformation (“live”
pressure) in contrast to the radially directed “dead” pressure. This
live fluid pressure loading case is still conservative, and a potential
energy function can be written. The additional terms which arise to
account for the potential energy due to live fluid pressure loading
are as follows!*:

v __1 du _ Jw + 1 2 Jw
P=od Y\ ox ax ) TR T\ e
v 2
+( 55w+t |Ridrds ®)

where u, v, and w are the displacement components at the outer
surface of the shell. These terms must be added to those in Eq. (9)
to produce the total potential energy of the buckled structure. Note
that the discrepancy between the radial and fluid pressure loading
cases diminishes as the number of circumferential waves of buckling
increases.

Asymptotic Procedure

The asymptotic approach developed by Koiter'’ is used for the
determination of the second-order fields associated with each of the
modes of buckling. Displacement, strain, and stress are expressed
in terms of an asymptotic expansion,

{w} = V¥ + wW®pEr 4+ W) + .-
(€)= (V) + (W + (D) + - ©)
{O'*} = {U(l)}i; + {0(2)}52 + {0.(3)}53 I

where £ is the scaling parameter of the buckling mode and measures
its growth in the postbuckling deformation. Terms up to the second-
order field are considered in the present study. By substitution of
these equations into the equilibrium equation, viz., 8IT = 0, and
collecting terms associated with like powers of £, the following set
of ordered perturbation equations is found:

STIV =0

STIP =0 19

where IV and I1® are defined subsequently. The first-order set of
the preceding equations [Eqgs. (10)] is an eigenvalue problem; the so-
lution of which gives the buckling load and mode, which are needed
for handling the second-order set. An orthogonality condition be-
tween the sets is imposed; however, the choice of displacement
functions in the present study results in the orthogonality condition
being automatically satisfied. We choose the maximum amplitude
at the center of the shell as the scaling parameter £ and the buckling
mode is normalized so as to make this parameter unity.

Buckling Problem
The potential energy for the first-order field is expressed as

0 = 4Gy Loy () L1, (") + 30 Loy (7)) +
)

where V{ is quadratic in surface displacements. The exact dis-
placement functions can be shown to take the form

W®} = " @, )} sin(po) + {u'“ (r, x)} cos(pd) 12)

where p is the wave number (= m and n for the overall and lo-
cal modes, respectively) and the functions {«'5} and {#'C} can be
expressed in terms of the degrees of freedom u;;, v;;, and w;; and
the shape functions ¢; (r), ¢; (x). In terms of the generic degrees of
freedom g;, I1D takes the form

n® =1 - )"  G.i=12...N) (3

where N, is the total number of degrees of freedom of the first-order
problem. The equations of equilibrium then are found by rendering
the potential energy function stationary.

This process is repeated for the second order field problem. First,
a potential energy expression for the problem is invoked,

H(z) = %[Cijl‘lik (u](f)) . Lljl (ul(2)) + A.O’i(o) . ink (u,(cz)
+ Cij{LZik (ul((l)) : Lljl (MI(Z))

-+ 2Llik (u,(‘,l)) . L“j (Ml(l), M](Z))}] + VISZ) (14)

where once again the V), term is quadratic in second-order displace-
ments. The displacement functions are taken in their exact form!

{u?}) = W®(, x)} + W5, x)} sin(2ph)
+ {u*€ (r, x)} cos(2pB) (15)

The potential energy function in terms of the generic degrees of
freedom takes the form

2 1,2 @y, @) @ 1 (1
n® = i(a,‘j - )"b[j )ql' q;” + Cirgg; qr( )q.-.(-)

G.j=12,...,N3) (r,s=1,2,...N)) (16)
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The equations of equilibrium follow:
(af = 20i7)a;” = =eirsa g a7
This set of equations is solved for qj.z) by setting A = A.

Static Postbuckling Response in the Individual Modes

Using the foregoing expressions [Egs. (7), (9), (12), and (15)] itis
possible to construct a potential energy function in terms of a single
variable £ in the form

I = i(a — Ab)E* + c&* + dt* (18)

where a, b, ¢, and d are constants calculable from the buckling
modes and second-order field.":'> Since the shell buckles into an in-
teger number of full waves, ¢ = 0. Thus, the bifurcation is symmet-
ric. The equilibrium equation that gives the postbuckling response
is given in the following form:

Mo =14 Ao (E/1)?
where

Ae=alb A =4r’d/a 19
A positive value of A, indicates a stable buckling process, whereas
anegative value indicates an unstable process which leads to imper-
fection sensitivity. Results of such an analysis have been discussed
by Kasagi and Sridharan! and Kasagi® and will not be discussed
here any further.

Interactive Buckling
Amplitude Modulation

As a result of the interaction of the two fundamental modes of
buckling, additional patterns of deformation are generated. These
are given to first-order accuracy by the mixed second-order field
(£1&; field). It can be shown that this field consists principally of
displacement fields in the form of local modes of buckling with wave
numbers n — m and n + m, where n and m are the local and overall
buckling wave numbers, respectively. When n 3> m, the evaluation
of this field using the standard perturbation procedure is riddled
with singularities. This scenario is circumvented by the technique
of amplitude modulation.

In the present treatment, an amplitude modulated local mode is
employed, i.e., the scalar parameter representing the magnitude of
the local buckling displacements is allowed to vary in the circumfer-
ential and axial directions according to a slowly varying function.'®
Physically, the amplitude modulating function accentuates the dis-
placement amplitudes on the compression side of overall mode
while at the same time decreasing the amplitude on the tension
side. The amplitude modulated local mode is equivalent to a lin-
ear combination of neighboring local modes with wave numbers,

..,hn—m,n,n+m,...,and it has two effects: it eliminates the
singularity problem alluded to earlier and seriously diminishes the
role of the mixed second-order field in the analysis.'®

The mixed second-order field is evaluated, rendering the potential
energy function stationary and imposing orthogonality to the local
buckling modes with n — m and n + m waves, respectively, which
are included by proxy in the amplitude modulated (first-order) local
field. Symbolically this function is written as

09 = 40y (L, (42) +2{ L (u2) - Loy (2 5)

) o ()02 + 1) o 2,0
e pel? (6B [ L (2 B

G j=12,...,6) k,1=1,2,3) (20)

where L is the unknown Lagrange multiplier, which helps to impose
the orthogonality condition.

Potential Energy Function for Interactive Buckling
The potential energy under the combined action of the two modes
can now be developed. The displacements are taken in the form

= {u e + (w0} £ @) 08 + {uf 2
+{uZ i ©;088 + {2} SO 088 @D

where f; () and ¢; (x) describe the variation of the amplitude mod-
ulating function in the circumferential and radial directions, respec-
tively. The ¢;(x) is taken as linear over each bay and f;(9) is rep-
resented by a Fourier series consisting of at least three terms, viz.,
axisymmetric, cos(m8), and sin(m8). This results in six degrees of
freedom for each element (three on the left end of the element and
three on the right end of the element). Over the junction and stiffener
element ¢ is taken as constant. Initial imperfections are included in
the strains

{e} = Li(w) + 5 L2(w) + Ly (u, &) (22)

where # represents the initial imperfections which are taken in the
form of buckling modes, local and/or overall. The potential energy
function is evaluated by a procedure which exploits both the or-
thogonality of the involved trigonometric functions and the slowly
varying nature!! of the overall quantities and the amplitude mod-
ulating function. The total potential energy function is obtained in
the form

M = —Abi&1E — Abjjukijbu + 3(ar — Ab)EL + dy &}
+ 3 (@i — Moijr)&ijEx + dijuipgrs&ijEnkpebrs

+ eijukijbukr + gijnkiEul 23)

The first two linear terms on right-hand side contain the contri-
butions of initial imperfections in the overall and local modes,
respectively. The quadratic terms (the third and the fifth terms,
respectively) come from the buckling problem and the d’ terms (the
fourth and the sixth) encapsulate the postbuckling effects in in-
dividual modes. The ¢’ and g’ terms give the nonlinear coupling
between the modes. Of these, the cubic terms given by e;;y arise
only when the amplitude modulation is considered. These are found
to be far more important than either the quartic terms or the contri-
butions of the mixed second-order field as discussed by Sridharan
and Kasagi.'? For later discussion, the general form of [T in terms
of generic degrees of freedom g; is found to be useful,

n= le‘!(aij — Abij)qiq; + %Qijkzqﬂj‘h

+ 50 giq;9kq — MbijGi @ j.k1=12,...,N) 24
wherea;;, b;j, a;jx, and a;; are constants, A is the loading parameter,
and g; are the imperfection parameters defined in the same sense as
the degrees of freedom g;.

Nonlinear Dynamic Analysis

General

The subject of dynamic instability encompasses many types of
problems, but this study involves a structure that is suddenly loaded
with a load of constant magnitude (step load) and infinite duration.
The dynamic instability of shell structures which exhibit signifi-
cant imperfection sensitivity due to modal interaction is consid-
ered. For loads less than the dynamic limit load, the structure will
oscillate about the corresponding static equilibrium point. As the
loads are increased the amplitudes of vibration become larger and,
at some load (Ap), the displacements build up without any limit.”8
For imperfection-sensitive structures the dynamic buckling load A,
is smaller than the corresponding static buckling load.

Lagrange Equations of Motion

As stated earlier, the structure is assumed to be excited in terms of
its principal modes of buckling. The inertia forces associated with
prebuckling displacements as well as the second-order fields are
neglected.”
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The Lagrange equations of motion for the shell can be obtained
in the form .

mijd; + (ai; — Abij)q; + %aid e + 3%ijuq;qkq — Abiq; =0
(25)
The first term in Eq. (25) is the inertial term and is related to the

kinetic energy 7 as follows:
_dfer
T dr\ ag;

r=1 f / f PP + O + (@P)rdrdods  (26)

mijqj

where

Note that in Egs. (25) and (26) a dot denotes differentiation with
respect to time. The remaining terms in Eq. (25) are derived from
the potential energy function [Eq. (24)]. The ordinary nonlinear dif-
ferential equations of motion in Eq. (25) are solved by the Newmark
method of time step integration!s with Newton-Raphson iterations.
The initial conditions (at time = 0) are that the displacement and
velocity are both equal to zero. Note that the acceleration takes a
nonzero value at time = 0, because of the presence of initial imper-
fections and is given by

Gi = Am;ib g @27
where [/n] matrix is the inverse of [m] matrix.

Damping

The effect of damping is of interest as it can, apart from reduc-
ing the amplitudes of oscillations with time, slightly enhance the
dynamic limit load. The damping is added to the structure as a

percentage of the critical damping value ¢, which is defined as
follows!:

Cor =2V KM 28)

where K and M are the generalized (linear) stiffness and mass of
the structure associated with a certain mode of vibration, respec-
tively. The damping matrix is derivable from the Rayleigh dissipa-
tion function'® R

R= %/f cea({@)? + (Y + (W)rdrdddx  (29)

where ¢ is the damping ratio which can be given different values for
the local and overall modes. Here again we neglect the contribution
of the second-order terms and as a result R is a quadratic in g;. The
dissipative forces F; are defined as follows:

oR

F=—r
agi

= —Cijq; (30)

The Lagrange equations of motion now become
masdiy + cijd; + (@i — Mbij)d; + 359k
+ %aijk,qjqkql d )»b,'jéj =0 (31)

Numerical Results

In this section, numerical results are presented with the following
objectives in view: to demonstrate the accuracy of the finite element
modeling for dynamic response and to highlight the salient features
of the response of stiffened shells under the combined influence
of dynamic loading and modal interaction, such as 1) the response
of stiffened shells before and at the onset of instability, 2) the im-
perfection sensitivity of ring stiffened shells having near-coincident
critical stresses, 3) the effect of damping, and 4) the buildup of
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Fig.2 Dynamic response of unstiffened composite shell, maximum displacement vs time.
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Table1 Comparison of natural frequencies
w of interior ring stiffened shell

w, rad/s w, rad/s
(circumferential (circumferential
wave number), wave number),

N; Zhou and Yang® present study

1 0.2699 (6) 0.2672 (6)

2 0.2777 (6) 0.2749 (6)

3 0.2849 (6) 0.2820 (6)

4 0.2914 (6) 0.2886 (6)

5 0.2974 (6) 0.2945 (6)

6 0.3028 (6) 0.2999 (6)

7 0.3048 (5) 0.3038 (5)

8 0.3053 (5) 0.3045 (5)

1 4
N
EO'%; \\\\\1~\
K] ] N —~ - —h
;.E 0.8+ N I ~—
L] ] S~ ~—
2 T~ —
2 074 - . —_—
A —
T os -
P ] W stafic interactive b
= 054
5 ] & dynamic interactive
:‘é 0.4 A static single mode
= E 4 dynamic single mode
03 T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10
Ovenall Imperfection ( Z:)

Fig. 4 Influence of modal interaction and dynamics on limit load of
the compeosite shell carrying overall imperfection.

1
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N
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0.5
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!
!
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0‘3-||lllll||
0o 1 2 3 4 5 6 T 8 9 10

Overall Imperfecti

(E1); Local Imperfection (21 )

Fig. 5 Comparison of static and dynamic load carrying capacities of
the isotropic shell under combined imperfections.

interlaminar stresses prior to the onset of instability. In all of the
examples the shells are assumed to be simply supported at the ends,
with w = v = 0 over the entire thickness.

Accuracy of the Finite Element Modeling

Extensive checking of the finite element modeling in the con-
text of static buckling and postbuckling behavior has been done and
reported elsewhere.'? As mentioned earlier, there is a scarcity of re-
sults for ring stiffened shells obtained from rigorous shell theories
including thickness effects. Here we present a comparison of the nat-
ural frequencies of ring stiffened shells as obtained by the present
model with those of Zhou and Yang® who employed a discrete stiff-
ener theory and transfer function approach for the analysis. The ma-
terial of the shell is isotropic, and the number of stiffeners was varied
from 1 to 8. The other parameters are as follows: R = 100, L = 100,
t=114=1d=2,F =10,000,v = 0.3,and p = 10. The results
for the smallest frequencies and the corresponding wave numbers
are given in Table 1. In the present model we employed fifth- and

1959

Limit Load (as a fraction of the Critical Load)

03 T T T T T T T T

Ovenall Inperfection ( £1) ; Local Inperfection (22 )

Fig. 6 Comparison of static and dynamic load carrying capacities of
the composite shell under combined imperfections.
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Fig. 7 Imperfection-sensitivity surface of the isotropic shell, dynamic
limit load vs imperfections.

Limit Load/Critical Load

Fig.8 Imperfection-sensitivity surface of the composite shell, dynamic
limit load vs imperfections.
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Fig. 10 Influence of 5% damping on the dynamic response of the composite shell at A = 0.271\ with 2y = E; = 5: - - - - 0% damping; — 5%

damping.

third-degree polynomials in the longitudinal and thickness direction,
respectively, in each of the elements, and this produced a converged
result to the fourth digit. Despite a number of differences between
the two approaches, it is seen that the results are very close indeed.

Nonlinear Dynamic Response
Geometry and Material Properties

Interactive buckling is considered for shells having nearly co-
incident local and overall critical loads. Isotropic and orthotropic
interior ring stiffened shells are considered with the following ge-
ometric and material properties (all material constants are given in
pounds per square inch).

For Shell 1 the material is isotropic with E = 10 x 10°, G
3.85 x 105, v = 0.3, and p = 0.147 x 1073, The geometry is
defined as R = 50 in., L/R = 4.64, R/t = 62.5, t,/t = 1.5,
djty = 4.792, S,/R = 0.400, and N, = 10. The critical stresses
are \V/E =1.17 x 107 and AP /E = 1.17 x 107*.

For shell 2 the material is specially orthotropic'® with E;; =
16.0 x 105, Epy = 1.48 x 10°, Eg; 1.48 x 108, v, = 0.33,
G, =0.76x 105, Gy = 0.51 x 10%, G13 = 0.76 x 10, vp3 = 0.33,
vz = 0.33, amd p = 0.147 x 1073, The geometry is defined as a
[90/0], laminate with R 50 in., L/R = 2.62, R/t 100,
I/t =2.0,d/t; =2.711,S,/R = 0.220, and N; = 10. The critical
stresses are AV /E;; = 1.90 x 1075 and A2 /E|; = 1.89 x 1075,

Imperfection Parameters

Two imperfection parameters, viz., 8, and E, are introduced to
give the magnitude of imperfections in the sense of overall and local
modes, respectively. The maximum overall and local imperfections

considered in the present work are £ /10 and R /100, respectively, and
these correspond to values of 10 and 10 for E; and E,, respectively.

Description of the Response

For loads below the dynamic limit load the displacements re-
main bounded and oscillate around a certain value. As the load
is increased, the amplitude of vibration increases while the fre-
quency decreases significantly. Figure 2 illustrates this behavior
for an unstiffened orthotropic shell (R = 50 in., L/R =4,t =1
in., &, 10, otherwise having the same data as shell 2) which
is governed by a single mode. The response curve with the small-
est amplitude is drawn for a load of one-half of the dynamic limit
load, and the response curve with the larger amplitude is for a load
just under the dynamic limit load. When the dynamic limit load is
reached, the displacements immediately become unbounded before
any oscillations occur. A different behavior, however, is observed
for the stiffened orthotropic shell (shell 2) under interactive buck-
ling. When the limit load is reached, the displacement amplitudes of
the overall mode complete a few oscillations before heading toward
infinity as shown in Fig. 3.

Reduction of Buckling Pressure Under Modal Interaction

The stiffened shell (shell 2) is further investigated to study the
effects of dynamic loading and mode interaction on the buckling
pressure of the shell. Figure 4 illustrates these reductions when con-
sidering only overall imperfections in the interactive analysis with
minute local imperfections to circumvent a dynamic bifurcation.
The top two curves show the reductions as found from a single mode
analysis whereas the bottom two curves show the reduction due to
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124 { cutting short the maximum load carrying capacity of the structure.
L1- s Since delamination is a common type of failure of laminated shells
13 N Te r‘d we pay special attention to interlaminar stresses. Figure 12 shows
E o T v the interlaminar shear stresses for the composite shell 2 with im-
0.9 E 4 perfections in both the local and overall modes (E; = E, = 10).
0.8 rs The 7,4 stresses are considered at the center of the shell between the
207 L outermost 0 and 90-deg layers at 8 = 45 deg. The 7,, stresses are
'53«0 62 P considered at the junction nearest the center between the two 0-deg
§ B w layers at & = 0 deg. The interlaminar stresses reach values above 1
@ 05 3 Vi ksi prior to attaining the dynamic limit load, values which may be
0.4 /;’ considered high for many composite materials. To predict delami-
03 > nation in a practical context, however, these values must be used in
023 o W conjunction with an appropriate failure criterion and the presence
N o -] of pre-existing delaminations and voids.
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Fig. 12 Variation of interlaminar stresses at selected locations of the
composite shell (21 = =, = 5) with load.

the interactive analysis. In the range of imperfections investigated,
the curves show that the load reduction increases monotonically
with imperfection magnitudes. Figures 5 and 6 show the reduction
due to dynamic loading for the two shells (1 and 2) carrying imper-
fections in both the local and overall modes, such that &, = &,. The
reduction is significant in each case, the maximum load reducing to
just 44% of the critical load for the orthotropic case.

Figures 7 and 8 show the variation of dynamic limit load with
imperfection magnitudes as given by 8; and E,, respectively, for
the two stiffened shells under study. Unlike in Figs. 5 and 6, &,
and &, are freely varied. These figures—often called imperfection-
sensitivity surfaces—tend to be rather steep for small imperfections
and flatten out as imperfections increase.

Influence of Damping

In practice, some damping is inherent in a shell. Damping per-
centages of 1-2% are likely. In this study, damping percentages of
1% and 5% are used for illustration, and damping is only added in
the overall mode. Considering shell 2 under combined imperfection
(E; = B, = 5) the reduction in the overall displacement amplitude
is shown in Figs. 9 and 10 for 1% and 5% damping, respectively.
The oscillations get damped out rather quickly in the latter case. The
effect of damping on the dynamic limit load is shown in Fig. 11. For
each case, the shell undergoes several oscillations before the dis-
placements become unbounded. For both 1% and 5% damping, the
dynamic limit load is only slightly increased and, thus, the damping
has little effect on the dynamic limit load.

Interlaminar Stresses
It is possible that the large-amplitude vibrations that precede the
onset of dynamic instability will cause some form of material failure

shell can be significantly lower than the static limit load under modal
interaction. The dynamic limit load is reduced to as low as 44% of
the critical load of the perfect shell for the coincident buckling case.
For loads below the dynamic limit load, the shell oscillates with
amplitudes which rapidly increase with the applied pressure. When
the dynamic limit load is reached, the displacements immediately
become unbounded for single-mode analysis. However, for interac-
tive analysis of a stiffened shell, the displacements undergo several
oscillations before becoming unbounded. The effects of damping on
the dynamic limit load of the shell are minimal for the percentages
of damping found in practice. The interlaminar stresses reach sub-
stantial values before the dynamic limit load is reached, something
which can be a cause for concern in practical design.
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